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ABSTRACT. The authors establish a set of nine new theta-function iden-
tities involving Ra, Rp and R,,, m € Z™ functions, which are based upon
a number of g-product identities and Jacobi’s celebrated triple-product
identity. These theta function identities depict the interrelationships
that exist among theta function identities and combinatorial partition-
theoretic identities.
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1. INTRODUCTION
Throughout this article, we employ the notation
o )
1- A
(A @)oo = H(W)
i=0
for any real or complex numbers ¢, A and m with |¢| < 1 so that

. P— 1 (n:())
etk {u — NI =21 =A)...(1=A") (neN)

and
(A @)oo = Tim (X; q)n = li[o(l —Aq").

Also, for convenience we write
()\17 )‘27 ) )‘n; q)oo = (Al; q)oo()\Q; q)oo cee (An: q)oo

Ramanujan [4, p. 31, Eq. (18.1)] defined the general theta function f(a,b)
as follows:

fla,b) =1+ Z(ab)"(”fl)m(a” +b"), labl < 1.

n=1

The above identity enjoys the famous Jacobi’s triple product identity [4, p.
35, Entry 19]
fla,b) := (—a;ab)oo(—b; ab) oo (ab; ab) o
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The three important g¢-series identities, which emerge naturally from the
above two identities and are worth noting here.

0(q) == (g,9) = Z 0" = (% (0% ) E;Cf]gq)ozzo_(gzgz

n('n+1) q q)
¥(q) = (g, 4" Zq —Tq)oo
and
f(=a) =f(=¢,=¢*) = D> (=1)"¢"*" V% = (g; ¢)oe-

By introducing the general family R(s,t,l,u,v,w), Andrews et al. [2] found
a number of interesting double summation hypergeometric g-series represen-
tation for several families of partitions and explored the role of double series
in combinatorial-partition identities:

1 R(s,t,l,u,v,w) := s)+t"rluvwn
( ) RS ) q

n=0
where

[E] (_1)i quv(;)+(w—ul)i

r(l,u,v,w;n) := .
( ) (@3 Dn—ui (¢"54")i

We also recall the following interesting special cases of (1) (see, for details,[2,

p. 106, Thorem 3]; see also [16]. Also, recently Srivastava et al. [17]

represented them in terms of the notations R, Rg and R,,, m € AR

(2) Ro:=R(2,1,1,1,2,2) = (—¢; ¢*)ox,
(3) Rs:=R(2,2,1,1,2,2) = (—¢% ¢*) o,
and

(@™ ™) oo
4 Ry = R(m,m,1,1,1,2) = ——5——
@ " ( ) (4™ %™ )oo

Further, several new advancements and generalizations of existing results
were made in regard to combinatorial partition-theoretic identities. For the
wonderful work one may refer [6, 7, 8, 9, 11]. An interesting recent investi-
gation on the subject of combinatorial partition-theoretic identities by Hahn
et al. [12] is also worth mentioning in this connection.

Motivated by the above work, in this paper we establish many new theta-
function identities which depict the inter-relationships in terms of R, Rg
and R,,, m € ZT functions along with g-product identities.

2. PRELIMINARIES

In this section, we list some preliminary results, which we need to prove
our main results.
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Lemma 2.1. [13, Theorem 3.1(i)] If

oo k= (- ()"

Lemma 2.2. [15, Theorem 3.7] If

then, we have

M = ql/fTZfQ and N = M(q°)

o = () - (8

Lemma 2.3. [3, p. 36,Theorem 3.5.1] If

M:LandN:M(qz)

a3 4

then, we have

then, we have

(MN)* + % = (%)12 —16 (%)4 — 16 (%)4

Lemma 2.4. [3, Theorem 2.3] If

!
CqRf

4 M\? [N\’
MN+W—<N> +(M) .
Lemma 2.5. [5, Entry 53 p. 206] [14, p. 325] If

!
g/

5 M\?  (N\?
MN+ -2 = (2 2
= () + ()
Lemma 2.6. [5, Entry 55 p. 209] If

1t
- q1/2f72

and N = M(q%)

then, we have

and N = M(¢%)

then, we have

and N = M(¢%)

then, we have

49 N\* N M [(M\?
MN*W*(M) T N*(N) :
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Lemma 2.7. [1, Theorem 5.3] If

__vd N
@V 2P(—gd) N o(q°)

then, we have
N? + M?N? =5+ M2
Lemma 2.8. [1, Theorem 5.2] If

Y(=q) ¢(q)
M = and N =
q¥(—q) ¢(q?)
then, we have
N+ MN=3+M.
Lemma 2.9. [5, Entry 65 p. 230] If
f3f5 2
M =——=—and N = M(q
q'3 f1f1s @)
then, we have
1 N\® (M\?
MN+W_ (M) + (W) + 4.

3. MAIN RESULTS

Theorem 3.1. Each of the following relationship holds true.
{ (0.4%. 6, 0% %) o }3+8q{(q27q4,q67q6;q6)m}3
(@%, 4% 4% ¢% %) (0,6% ¢, 8% )
3 3 6 6
(5) - {Rl(q6;q°)oo} _q{R?)(qz;qQ)oo}
R3(¢% ¢*) o R1(45:¢5)00 J
which gives the inter-relationship between Ry and Rs.
{ (0,.4% ¢ 4" ¢, ¢ ¢°) o }2 4{ (@%, 4%, 4% ¢, 4", 4" ¢") }2
(@%, 4% ¢% a8, ¢'°,¢'% ¢'0) (. ¢% ¢ 4% ¢ 1 ¢°) o
3 3
(6) _ ql/ﬁ{Rl(qw%qlo)oo} 7q1/6{ R5(q% ¢%)oo }
R5(¢%;¢%)o Ri(¢"% ¢ J 7
which gives the inter-relationship between Ry and Rs.
4 4
{ (2.4%, 4% ¢*) } N 256q3{ (q4,q87q8;q6)oo}
(a%, 4%, 6% %) (4,42, ¢% 4%
12 4 4
@) = {Rl(q8§ q8)oo} 3 16q2{ Ri(g% qs)oo} 716(12{ Ry(g% q2)oo}
R4(¢% 4?) oo R4(¢% ¢?) o Ri(q%¢%)00 )
which gives the inter-relationship between R1 and Ry.
(0.6% ¢, % %), 4a(qh, 4% ¢"% ¢"% ¢") s
(¢4, 4%, ¢'%,¢'% ¢'?) o (0,6% ¢, 0% )
2 ‘ 2
® _ { Ro(4:¢*)so (0" ¢*)x } +{Rz(q3;q6)oo(q12;q12)oo}
Ro(43;45)s0 (4% ¢?) o Rs(4;0®)o0 (0% ¢ e )~
which gives inter-relationship between Ro and Rg.
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Proof of (6). Rewriting M and N in terms of bases ¢°, ¢'° in Lemma 2.2
and employing (4), we obtain

(0.4% ¢, 4" ¢, 4% ¢°) o

MN = ¢'f
(@®,4*¢%¢%,¢'°,¢'% ')

and
M = ql/6 R5(¢% ¢%) oo
N R1(¢"%¢"%)oc
On employing M N and M/N in Lemma 2.2, we complete the proof. O
Proof of (7). Rewriting M and N in terms of bases ¢2, ¢® in Lemma 2.3
and employing (4), we obtain
1 2 2.2
MN = (q4»q8,q8,q6)0<>
¢*/® (¢* 4%, 4% ¢) o
and
M _ s Bal@ )
N Ri(g% 6%
On employing M N and M/N in Lemma 2.3, we complete the proof. |
Proof of (8). Rewriting M and N in terms of bases ¢3, ¢'? in Lemma 2.4
and employing (4), we obtain
uy = L (666 %)
g2 (¢*,¢% 4"%, 4" ¢*) s

and
M s Re(@:4%)sc(ah 4"

=y )
N R(a%54%)o0(a"%5¢"%) o
On employing MN and M/N in Lemma 2.4, we complete the proof. [

Proof of (9). Rewriting M and N in terms of bases ¢2, ¢! in Lemma 2.5
and employing (4), we obtain

uy = L (06 ¢% )
a2 (¢°, ¢, ¢ ¢'0) oo

and

M :ql/b’ R5(q% ¢%) oo
N Ri(¢"% ¢
On employing M N and M/N in Lemma 2.5, we complete the proof. O
Proof of (10). Rewriting M and N in terms of bases ¢%, ¢'* in Lemma 2.6
and employing (4), we obtain

uN - L (94668 ¢% )
¢ (", 47, a", a", ¢, ¢ M) o

and
M _ q1/2 R3(¢% 4% ¢%)oo
N Ri(q", q"¢M) o
On employing M N and M/N in Lemma 2.6, we complete the proof. (|
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Proof of (11). Replacing ¢ — —¢q in Lemma 2.7 and rewriting M and N in
terms of bases ¢ and ¢'° and employing (2)-(4), we obtain

R 0% %) oo (=P, —q10; g0
S and N = (&9 Q)oo(qu 4 Joo
q'/%Rs RoRg(q%, 4" ¢") oo
On employing M and N in Lemma 2.7, we complete the proof. (|

Proof of (12). Replacing ¢ — —¢ in Lemma 2.8 and rewriting M and N in
terms of bases ¢ and ¢'® and employing (2)-(4), we obtain
1 2. 2\ (_.9 __18. 18
Mo tB o (4,45 )oo(gc]l,8 qlg,q Joo
q Ry RaR3(4”,4"%:4"%)oc
On employing M and N in Lemma 2.8, we complete the proof. |

Proof of (13). Rewriting M and N in terms of bases ¢2, ¢%, ¢'° and ¢'° in
Lemma 2.9 and employing (4), we obtain
_ (@3, 45, 4% ¢%) oo (@, 42, 4'%; 410 oo

MN k L
4(4, 4%, 6% 4*) (0", ¢*°, 3% ¢*0) o

and

M _ ysfa Bas (¢%4%) (4" ¢") s
N Rs R5(¢% 4%)oo (4% 4% o0
On employing MN and M/N in Lemma 2.9, we complete the proof. O

4. CONCLUDING REMARKS AND OBSERVATIONS

The present investigation was motivated by several recent developments
dealing essentially with theta-function identities and combinatorial partition-
theoretic identities. Here, in this article, we have established nine presum-
ably new theta-function identities which depict the inter-relationships that
exist among between R, B3 and R, and combinatorial partition-theoretic
identities. In particular, the recent works by Chaudhary (see [7] - [9]),
Chaudhary et al. (see [10] -[11]), and Srivastava et al. (see [18]) are worth
mentioning here.
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